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A discontinuous Galerkin method=HLLC solver for
the Euler equations
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SUMMARY

This paper proposes a fully three-dimensional non-linear Euler methodology for solving aerodynamic and
acoustic problems in the presence of strong shocks and rarefactions. It uses a discontinuous Galerkin
method (DGM) within the element, and a Riemann solver (HLLC) at the boundaries to propagate
rarefactions while preserving the entropy condition and capturing shocks with no spurious oscillations.
This approach is thought to marry the best aspects of �nite element and �nite volume methods, achieving
conservation while not requiring the solution of a large matrix. Examples in which shock and rarefaction
waves are well captured are presented and the propagation of acoustic pulses is well demonstrated.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We present in this paper a 3D methodology for solving aerodynamic problems in the presence
of strong shocks and rarefactions. It is proposed to use the discontinuous Galerkin method
(DGM), introduced by Reed and Hill [1] for the neutron transport equations and subse-
quently generalized to �uid mechanics by Cockburn and Shu [2], and recently applied to the
2D Navier–Stokes equations by Bassi et al. [3]. Other authors applied this methodology to
other physical applications such as electromagnetism, see References [4, 5]. Karniadakis and
Sherwin [6] and Warburton [7], have developed a hierarchical tensor-type basis to get high-
order schemes. A literature review can be found in Reference [8].
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The DGM applies the Galerkin approach to each element via a local basis function, but
solves the governing equations in a �nite element space of discontinuous functions. The
resulting equations remain local to the generating element and the only matrix inversion
required is that of a local mass matrix, which can be diagonalized via an appropriate basis
function set.
The local integration by parts then yields the trace of the �ux vector on the boundary of

each element. A suitable Riemann solver, chosen here to be the HLLC solver [9], can be used
to de�ne these �uxes. The choice of the numerical �uxes is very important in the presence
of shocks and rarefactions and since the exact Riemann solver would be very expensive, for
non-linear problems, it was decided to use the HLLC approximate Riemann solver which
is based on an exact resolution of a Riemann problem using an approximate wave speeds
propagation which are unknowns in the original exact Riemann problem.
The main advantages of the HLLC solver are its ability to capture strong shocks without

producing spurious oscillations, and of propagating rarefactions in the presence of low-density
�ow while preserving the entropy condition (see Reference [10]). This, generally, may not be
guaranteed by a linearized approximate Riemann solver, which violates the entropy condition
and may end up computing rarefaction shocks. This solver also preserves initially positive
densities and pressures.
To implement non-re�ecting boundary conditions, we use a zonal approach proposed by

Freund [11], that combines the techniques proposed by Ta’asan and Nark [12] and Berenger
[13]. It consists of adding to the Euler equations advective and damping terms in all directions,
but that only become e�ective in the in�ow and out�ow zones.
The overall approach used here can still be labelled as a FEM, with the degenerate case

of the DGM, corresponding to zeroth order basis functions, being the classical FVM. The
approach is seen to contain many of the advantages of the FVM and FEM. First, is the
absence of a large global matrix; second, is the higher accuracy given by the FEM basis
functions as compared to the discrete gradients required by the FVM; and, third, is the ease
of incorporation of slope limiters. Finally, the approach can use uniform or hybrid meshes
and is highly parallelizable.

2. DISCRETIZATION DETAILS

Consider the 3D Euler equations in conservative form:

d
dt
Q +

i=3∑
i=1

@Fi
@xi
=0 on �× [0; T ]

Q=




�

�u

�v

�w

E



; F1 =




�u

�u2 + P

�uv

�uw

(E + P)u



; F2 =




�v

�uv

�v2 + P

�vw

(E + P)v



; F3 =
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�uw

�vw

�w2 + P

(E + P)w




(1)
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where �; u; v; w; E, and P represent density, Cartesian velocity components, total energy per
unit volume, and pressure, respectively.
Taking �nite element basis function sets that contain polynomials of degree N on each

volume Ti such that �=
⋃i=M
i=1 Ti, the approximate solution is sought in this �nite element

space denoted by VN , and is determined from the following weak formulation:
Let F =(F1; F2; F3), and for any v(x)∈VN

d
dt

∫
Ti
Qv(x) dx +

∑
j∈N (Ti)

∫
Ti∩Tj

F · nijv(x) d�−
∫
Ti
F · ∇v(x) dx=0 (2)

where N (Ti) is the set of neighbours sharing an edge with Ti and nij is the outward unit
normal to Ti ∩ Tj.
As with a Galerkin scheme, the test functions are chosen to be the local basis functions:

v(x)=’k(x) k=1; : : : ; L

The local basis functions are de�ned by considering the following oriented tetrahedron

’k =Lk k=1; 4 for P1 interpolation

while for the P2 interpolation we take

’i = Li(2Li − 1) i=1; 2; 3; 4

’i =4LjLk i=5; 6; 7; 8; 9; 10
(3)

where j and k are nodes located along the same edge as i and (Lk ; k=1; : : : ; 4) are the
volume co-ordinates of the tetrahedron.

2.1. Evaluation of the integrals

There are several ways to evaluate these integrals, Atkins and Shu proposed [14] a quadrature-
free implementation based on the expansion of the �uxes in a chosen local basis set. This
process requires less storage than conventional implementation, however, the accuracy of the
�ux expansion is not evident in the non-linear case.
Here, the resulting integrals are evaluated by Gauss quadrature rules, which are exact, with

p Gaussian points, for polynomials of degree (2p− 1).
This method is uniformly (N +1)th order accurate when polynomials of degree N are used

[15, 16], which leads to a high-order method.
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For the interface integral:∫
Ti∩Tj

F · nij’k(x) d� k=1; : : : ; 4 (4)

one can approach the �ux F · nij by a numerical �ux chosen in various manners. An approxi-
mate resolution of a Riemann problem at the interfaces between the volume of integration,
put forward by Toro et al. [17], and known as the HLLC Riemann solver, is proposed here.
Let us denote �ij this �ux by

�ij ∼F · nij (5)

then, an appropriate quadrature rule is used to calculate the integrals:∫
Ti∩Tj

�ij’k(x) d� k=1; : : : ; 4 (6)

2.2. The HLLC solver

In order to capture contact discontinuities and shocks, the HLLC Riemann solver (see details
in Reference [18]) is used to compute the numerical �uxes. This scheme is a modi�cation of
the HLL [12] scheme. The central idea is to assume a wave con�guration for the solution that
consists of three waves separating four constant states. In the Euler equations, the solution
of the Riemann problem consists of a contact wave and two acoustic waves, which may be
either shocks or expansion fans.
This solver is based on Godunov’s method where the approximate solutions are constructed

by averaging intermediate states in the exact solution, respecting certain principles like exactly
resolving isolated shocks and contact discontinuities.
The three-dimensional Euler �ux in the normal direction is given by F · nij, where

F · nij=




�q

�uq+ Pnxij

�vq+ Pnyij

�wq+ Pnzij

(E + P)q



; nij=



nxij

nyij

nzij


 ; q= unxij + vn

y
ij + wn

z
ij (7)

q is the component of velocity acting in the normal direction. Therefore, one can resolve a
Riemann problem in the normal direction and the problem becomes one-dimensional.
The four states, from left to right are denoted by QL; Q∗

L; Q
∗
R, and QR and are separated by

the wave speeds SL; SM and SR, respectively. SM is the contact wave speed and SL and SR
are the left acoustic wave speed and the right acoustic wave speed, respectively.
If the �ow is supersonic, then the �ux is given either by F(QL) if SL¿0, which corresponds

to a supersonic �ow from left to right, or by F(QR) if SR¡0, which corresponds to a
supersonic �ow from right to left.
In the more complex subsonic case, when SL¡0¡SR, we consider two intermediate states,

between the two acoustic waves, separated by a contact discontinuity.
The HLLC solver proposed is based on an exact resolution of a Riemann problem, while

averaging the wave speeds SL; SM, and SR in an appropriate manner.
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By applying the Rankine–Hugoniot conditions across each of the waves of speeds SL; SM,
and SR, the HLLC �ux is obtained for the approximate Godunov scheme as follows:

�ux=




F(QL) if SL¿0

F(QL) + SL(Q∗
L −QL) if SL60¡SM

F(QR) + SR(Q∗
R −QR) if SM606SR

F(QR) if SR¡0

(8)

Acoustic wave speeds estimates chosen in this solver are extremely robust and yield the exact
velocity for isolated shocks. The algorithm can be found in Reference [20].

2.3. Time integration

We obtain, after space discretization, the following ODE:

d
dt
Q=L(Q; t) (9)

L(Q; t) is the approximation of
∑i=3

i=1 @Fi=@xi by the DGM described above.
The solution is advanced in time with a TVD Runge–Kutta method, with p stages

Q0 =Qn

Ql =
e=l−1∑
e=0

[�leQe + �le�tL(Qe; tn + dl�t)]; l=1; 2; : : : ; p

Qn+1 =Qp

(10)

Here, the coe�cients p; �; � and d are related to the order and stability of the scheme.

2.4. The generalized slope limiter

The slope limiter used in this code is inspired from the modi�ed slope limiter of Cockburn
and Shu [14]. This limiter maintains the formal accuracy of the scheme at extrema and is
formally uniformly second order in space and time.
This generalized slope limiter named 	
 is a non-linear projection operator and is devised

in such a way that if Q′=	
U for some function U , then the mapping

Ql → !il with !il=Ql +
�il
�il
�tL(Ql) (11)

is stable, that is, |!il|6Ql.
The above time discretization algorithm (Equation (10)) is then modi�ed as follows:

Q0 = 	
Qn

Ql =	

(
e=l−1∑
e=0

[�leQe + �le�tL(Qe; tn + dl�t)]
)
; l=1; 2; : : : ; p

Qn+1 =Qp

(12)
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The use of the generalized slope limiter is crucial to ensure the stability of the method when
shocks are present. It is redundant when the solution is smooth.
When piecewise constant approximations are used for the space discretization and the �rst-

order scheme is employed for time discretization, a standard FVM is obtained and the slope
limiter becomes the identity.

2.5. Non-re�ecting boundary conditions

It was observed in Colonius et al.’s work [21] that re�ection errors are induced when linearized
boundary conditions are used for non-linear equations such as the Euler equations. In cases
where high amplitude non-linear waves must exit the domain without signi�cant re�ections,
it has been found necessary to add non-physical exit zones, known as bu�er zones, to the
computation.
Several authors have proposed techniques to minimize re�ections. Ta’asan and Nark [22]

add a convective term to the linear Euler equations to force them to be supersonic at the
borders of the numerical domain. Berenger [23] proposed another zonal boundary treatment
for Maxwell’s equations by adding a damping term to the equations. Hu [24] extended this
technique to the linear Euler equations.
Here, we propose a zonal approach used by Freund [25] that combines the techniques

proposed by Ta’asan, Nark and Berenger. It adds to the Euler equations advective and damping
terms in all directions that only become e�ective in the in�ow and out�ow zones.
Suppose that x1 is the streamwise direction of the wave, the modi�ed equations can be

written as

d
dt
Q +

i=3∑
i=1

@Fi
@xi
=−�(x1)[Q −Qtarget]−Uc(x1) @Q@x1 (13)

where �(x1) is an arti�cial damping function and Uc(x1) is an arti�cial convection velocity.
The form chosen for these functions is given by

�(x) =




�0l

(
wl − x
wl

)��l
06x¡wl

0 wl6x¡xmax − wr

�0l

(
x − (xmax − wr)

wr

)��r
xmax − wr6x6xmax

(14)

Uc(x) =




U0l

(
wl − x
wl

)�ul
06x¡wl

0 wl6x¡xmax − wr

U0l

(
x − (xmax − wr)

wr

)�ur
xmax − wr6x6xmax

(15)

where �0(l; r); U0(l; r) are the maximum values of the damping and convective terms at the left
and right domain edges, and wl; wr are the widths of the support of � and U . U0(l; F) is taken
to be greater than the sound speed.
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Some of the advantages of this technique are its robustness and that non-linear re�ection
errors from the far-�eld boundary are minimized. It should also be noted that no additional
equation, but only additional terms, are generated and hence no extra variables need be stored.
Finally, it has been proven that this technique is appropriate to non-linear calculations (see
Reference [25]).

2.6. Summary of the problem to resolve

Here we recall the problem to resolve and the method used for the numerical resolution. The
continuous problem is given by the following formulation:

d
dt
Q +

i=3∑
i=1

@Fi
@xi
=−�(x1)[Q −Qtarget]−Uc(x1) @Q@x1 on �× [0; T ] (∗)

�(x)=




�0l

(
wl − x
wl

)��l
06x¡wl

0 wl6x¡xmax − wr

�0l

(
x − (xmax − wr)

wr

)��r
xmax − wr6x6xmax

Uc(x)=




U0l

(
wl − x
wl

)�ul
06x¡wl

0 wl6x¡xmax − wr

U0l

(
x − (xmax − wr)

wr

)�ur
xmax − wr6x6xmax

In Equation (∗), the left terms are the Euler equations and the right terms contain the damping
and the advective terms used for the non-re�ecting boundary conditions.
For the numerical discretization, we use a Runge–Kutta scheme for the time evolution and

for space discretization we choose a discontinuous Galerkin method with the HLLC solver to
compute the numerical �uxes. These �uxes are given by the following formulation:

�ux=




F(QL) if SL¿0

F(QL) + SL(Q∗
L −QL) if SL60¡SM

F(QR) + SR(Q∗
R −QR) if SM606SR

F(QR) if SR¡0

where SL; SM and SR are the three wave speeds from left to right and QL; Q∗
L; Q

∗
R, and QR

are the four states separated by the wave speeds.
To ensure the stability of the numerical method, a non-linear slope limiter is used such as

the accuracy is maintained.
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3. NUMERICAL ASSESSMENT AND RESULTS

We give here some numerical results obtained via DGM to demonstrate its performance and
robustness. Non-linear discontinuities (shocks), rarefactions and acoustic pulses are resolved
by a second-order method.

3.1. Shock waves

The problem consists of a tube, with a membrane located at x= x0, separating two gases of
di�erent pressures and densities.
The initial states to the left and right of the diaphragm are given by

Q(x; y; z; 0)=

{
Ql x¡x0

Qr x¿x0

where

Test �L UL PL �R UR PR

1 1.0 0.75 1.0 0.125 0.0 0.1

This test is denoted as the Sod test problem and the solution consists of a left rarefaction, a
right contact discontinuity and shock.
The speci�c internal energy is given by: Internal energy=P=(�− 1)�.
Here, in Figures 1 and 2, we compare the solution obtained from the HLLC solver with a

solution obtained by the Roe scheme.

Figure 1. Shock-collision, internal energy comparison, x0 = 0:3, solution at time t=0:2 units.
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Figure 2. Shock-collision, velocity comparisons, x0 = 0:3, solution at time t=0:2 units.

The grid used for this test corresponds to 43 points in the x-direction where 06x61 for
the HLLC solver and 100 points for the Roe solver.
We can note that the solutions obtained from the Roe solver are not quite correct near the

sonic point, but that the HLLC solutions are very accurate near these sonic points.

3.2. Transonic �ow over a NACA0012

We present next a numerical experiment with an airfoil to show the shock capturing capability
of the method, even on coarse grids.
The test consists of a transonic �ow around a NACA0012 at Mach 0.85. A shock appears

at the 75% chord location.
In this test, the mesh has only 9729 nodes, for a non-dimensional characteristic length of

1 and a total domain length of 12 (Plate 1).
Figures 3 and 4 represent both lower and upper pro�les of the Mach number and the

pressure, respectively.
Although the grid is intentionally chosen to be quite asymmetric, Figures 3 and 4 show the

solutions to be perfectly symmetric.
In addition, if we compare the solution to the one obtained with a re�ne grid in

Figure 5, one can note the acceptable quality of the transonic results obtained with a very
coarse grid.
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Figure 3. Mach number, NACA0012 wing, Mach=0:85; AoA=zero.

Figure 4. Pressure, NACA0012 wing, Mach=0:85; AoA=zero.
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Figure 5. Mach Comparison, NACA0012 wing, Mach=0:85; AoA=zero.

3.3. Aero-acoustics application

The unsteady �ow is initialized by a Gaussian disturbance with a half-width of 3 as follows:




�
U
V
w
P



=




�∞ + 0:01 exp(− ln(2)(x
2 + y2)
9

0:0
0:0
0:0

P∞ + 0:01 exp(− ln(2)(x
2 + y2)
9




The computational domain is (x; y; z)∈ [−50; 50]× [−50; 50]× [0; 20], and the number of points
is around 32× 32× 12 in the three directions.
The disturbance pulses are relatively small so that the non-linear numerical solutions may

be compared with the solution of the linearized Euler equations. Plate 2and Figure 6 represent
the 2D acoustic pressure and the acoustic pressure along y=0, respectively, compared to the
exact solution. The high quality of the numerical solution is apparent.

3.4. Non-re�ecting boundary evaluation

To test the e�ect of the damping technique, we consider the above experiment of acoustic pulse
propagation and compare the result with the one obtained without damping terms when the
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Figure 6. Acoustic pressure along y=0; time=30 units.

pulse leaves the domain. It was observed that the power coe�cient � �xed to 3 is numerically
optimal in such test case.
The solutions given by Plates 3 and 4 demonstrate the e�ciency of the absorbing layer.

We have also compared the pressure along y=0 as is shown in Figure 7. Comparisons at
di�erent times with damping layer and with same coe�cients to show the e�ciency of the
damping method when the wave continues to leave the domain is presented in Figure 8.
These tests show the e�ciency of the non-re�ecting boundary technique used in the present
methodology.

3.5. Mesh convergence

We study in this section the mesh convergence for DGM method in resolving acoustic prob-
lems.
First we recall the de�nition of the grid convergence index (GCI) proposed by Roache in

his book [26]. The idea is to give an error estimator which is derived from the theory of
generalized Richardson extrapolation:

Fexact =F1 +
(F1 − F2)
(rp − 1)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1391–1405
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Figure 7. Pressure comparison along y=0; time=55 units.

where F1 is a �ne grid solution and F2 is a coarse grid solution, r is the value of the grid
ratio and p is the order of the numerical method.
We de�ne the Estimated fractional error E1 for the �ne grid solution F1 as

E1 =
�

(rp − 1)

�=
(F1 − F2)
F1

The relative error grid convergence index (GCI) for the �ne grid is then given by

GCI1 =
3|�|

(rp − 1)
And the relative error grid convergence index for the coarse grid is then given by

GCI2 =
rp3|�|
(rp − 1)

In Table I we present, the GCI for �ne and coarse grids taking r=2. The �rst and second
interpolations are considered.
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Figure 8. Pressure comparison at di�erent times with width =7.

Table I. GCI for the acoustic problem.

Fine grid Coarse grid

Method’s order GCI Method’s order GCI

1 3.45% 1 6.90%
2 2.41% 2 4.84%

4. CONCLUSIONS

It can be deduced from the numerical results presented here that the DGM is well suited for
propagating shocks, even on coarse grids, and for accurately treating rarefactions near low-
density �ow, features that cannot be guaranteed by a linearized approximate Riemann solver.
Owing to its accuracy and to the HLLC Riemann solver, this approach has high potential for
solving strong discontinuities in the aerodynamic and aero-acoustic areas.
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Plate 1. NACA0012 wing mesh and Mach contours.
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Plate 2. 2D acoustic pressure, time=30 units.
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Plate 3. Solution with no damping, time=55 units.
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Plate 4. Solution with damping, time=55 units.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43(12)


